EconPapers    
Economics at your fingertips  
 

Sondheimer oscillations as a probe of non-ohmic flow in WP2 crystals

Maarten R. Delft (), Yaxian Wang, Carsten Putzke, Jacopo Oswald, Georgios Varnavides, Christina A. C. Garcia, Chunyu Guo, Heinz Schmid, Vicky Süss, Horst Borrmann, Jonas Diaz, Yan Sun, Claudia Felser, Bernd Gotsmann, Prineha Narang () and Philip J. W. Moll ()
Additional contact information
Maarten R. Delft: Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL)
Yaxian Wang: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
Carsten Putzke: Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL)
Jacopo Oswald: IBM Research Europe - Zurich
Georgios Varnavides: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
Christina A. C. Garcia: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
Chunyu Guo: Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL)
Heinz Schmid: IBM Research Europe - Zurich
Vicky Süss: Max Planck Institute for Chemical Physics of Solids
Horst Borrmann: Max Planck Institute for Chemical Physics of Solids
Jonas Diaz: Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL)
Yan Sun: Max Planck Institute for Chemical Physics of Solids
Claudia Felser: Max Planck Institute for Chemical Physics of Solids
Bernd Gotsmann: IBM Research Europe - Zurich
Prineha Narang: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
Philip J. W. Moll: Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL)

Nature Communications, 2021, vol. 12, issue 1, 1-9

Abstract: Abstract As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR even when lMR ≫ d. We extract lMR from the Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25037-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25037-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25037-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25037-0