EconPapers    
Economics at your fingertips  
 

Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe

Y. Hayashi (), Y. Okamura (), N. Kanazawa, T. Yu, T. Koretsune, R. Arita, A. Tsukazaki, M. Ichikawa, M. Kawasaki, Y. Tokura and Y. Takahashi ()
Additional contact information
Y. Hayashi: University of Tokyo
Y. Okamura: University of Tokyo
N. Kanazawa: University of Tokyo
T. Yu: University of Tokyo
T. Koretsune: Tohoku University
R. Arita: University of Tokyo
A. Tsukazaki: Tohoku University
M. Ichikawa: University of Tokyo
M. Kawasaki: University of Tokyo
Y. Tokura: University of Tokyo
Y. Takahashi: University of Tokyo

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract Physics of Weyl electrons has been attracting considerable interests and further accelerated by recent discoveries of giant anomalous Hall effect (AHE) and topological Hall effect (THE) in several magnetic systems including non-coplanar magnets with spin chirality or small-size skyrmions. These AHEs/THEs are often attributed to the intense Berry curvature generated around the Weyl nodes accompanied by band anti-crossings, yet the direct experimental evidence still remains elusive. Here, we demonstrate an essential role of the band anti-crossing for the giant AHE and THE in MnGe thin film by using the terahertz magneto-optical spectroscopy. The low-energy resonance structures around ~ 1.2 meV in the optical Hall conductivity show the enhanced AHE and THE, indicating the emergence of at least two distinct anti-crossings near the Fermi level. The theoretical analysis demonstrates that the competition of these resonances with opposite signs is a cause of the strong temperature and magnetic-field dependences of observed DC Hall conductivity. These results lead to the comprehensive understanding of the interplay among the transport phenomena, optical responses and electronic/spin structures.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25276-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25276-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25276-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25276-1