EconPapers    
Economics at your fingertips  
 

Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor

Zhi Dong, Zongqing Ma (), Liming Yu and Yongchang Liu ()
Additional contact information
Zhi Dong: Tianjin University
Zongqing Ma: Tianjin University
Liming Yu: Tianjin University
Yongchang Liu: Tianjin University

Nature Communications, 2021, vol. 12, issue 1, 1-10

Abstract: Abstract With excellent creep resistance, good high-temperature microstructural stability and good irradiation resistance, oxide dispersion strengthened (ODS) alloys are a class of important alloys that are promising for high-temperature applications. However, plagued by a nerve-wracking fact that the oxide particles tend to aggregate at grain boundary of metal matrix, their improvement effect on the mechanical properties of metal matrix tends to be limited. In this work, we employ a unique in-house synthesized oxide@W core-shell nanopowder as precursor to prepare W-based ODS alloy. After low-temperature sintering and high-energy-rate forging, high-density oxide nanoparticles are dispersed homogeneously within W grains in the prepared alloy, accompanying with the intergranular oxide particles completely disappearing. As a result, our prepared alloy achieves a great enhancement of strength and ductility at room temperature. Our strategy using core-shell powder as precursor to prepare high-performance ODS alloy has potential to be applied to other dispersion-strengthened alloy systems.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25283-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25283-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25283-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25283-2