EconPapers    
Economics at your fingertips  
 

Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics

Federico Pressacco (), Davide Sangalli, Vojtěch Uhlíř, Dmytro Kutnyakhov, Jon Ander Arregi, Steinn Ymir Agustsson, Günter Brenner, Harald Redlin, Michael Heber, Dmitry Vasilyev, Jure Demsar, Gerd Schönhense, Matteo Gatti, Andrea Marini, Wilfried Wurth and Fausto Sirotti
Additional contact information
Federico Pressacco: Hamburg University
Davide Sangalli: Division of Ultrafast Processes in Materials (FLASHit)
Vojtěch Uhlíř: Brno University of Technology
Dmytro Kutnyakhov: Deutsches Elektronen-Synchrotron DESY
Jon Ander Arregi: Brno University of Technology
Steinn Ymir Agustsson: Johannes Gutenberg-Universität, Institute of Physics
Günter Brenner: Deutsches Elektronen-Synchrotron DESY
Harald Redlin: Deutsches Elektronen-Synchrotron DESY
Michael Heber: Deutsches Elektronen-Synchrotron DESY
Dmitry Vasilyev: Johannes Gutenberg-Universität, Institute of Physics
Jure Demsar: Johannes Gutenberg-Universität, Institute of Physics
Gerd Schönhense: Johannes Gutenberg-Universität, Institute of Physics
Matteo Gatti: European Theoretical Spectroscopy Facility (ETSF)
Andrea Marini: Division of Ultrafast Processes in Materials (FLASHit)
Wilfried Wurth: Hamburg University
Fausto Sirotti: Synchrotron SOLEIL, L’Orme des Merisiers

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25347-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25347-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25347-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25347-3