EconPapers    
Economics at your fingertips  
 

Deep neural network-estimated electrocardiographic age as a mortality predictor

Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão, Manoel Horta Ribeiro, Marcelo M. Pinto-Filho, Paulo R. Gomes, Derick M. Oliveira, Ester C. Sabino, Bruce B. Duncan, Luana Giatti, Sandhi M. Barreto, Wagner Meira, Thomas B. Schön () and Antonio Luiz P. Ribeiro ()
Additional contact information
Emilly M. Lima: Universidade Federal de Minas Gerais
Antônio H. Ribeiro: Universidade Federal de Minas Gerais
Gabriela M. M. Paixão: Universidade Federal de Minas Gerais
Manoel Horta Ribeiro: École Polytechnique Fédérale de Lausanne
Marcelo M. Pinto-Filho: Universidade Federal de Minas Gerais
Paulo R. Gomes: Universidade Federal de Minas Gerais
Derick M. Oliveira: Universidade Federal de Minas Gerais
Ester C. Sabino: Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo
Bruce B. Duncan: Universidade Federal do Rio Grande do Sul
Luana Giatti: Universidade Federal de Minas Gerais
Sandhi M. Barreto: Universidade Federal de Minas Gerais
Wagner Meira: Universidade Federal de Minas Gerais
Thomas B. Schön: Uppsala University
Antonio Luiz P. Ribeiro: Universidade Federal de Minas Gerais

Nature Communications, 2021, vol. 12, issue 1, 1-10

Abstract: Abstract The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient’s age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25351-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25351-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25351-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25351-7