EconPapers    
Economics at your fingertips  
 

Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot

F. Valmorra, K. Yoshida, L. C. Contamin, S. Messelot, S. Massabeau, M. R. Delbecq, M. C. Dartiailh, M. M. Desjardins, T. Cubaynes, Z. Leghtas, K. Hirakawa, J. Tignon, S. Dhillon, S. Balibar, J. Mangeney, A. Cottet and T. Kontos ()
Additional contact information
F. Valmorra: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
K. Yoshida: University of Tokyo
L. C. Contamin: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
S. Messelot: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
S. Massabeau: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
M. R. Delbecq: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
M. C. Dartiailh: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
M. M. Desjardins: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
T. Cubaynes: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
Z. Leghtas: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
K. Hirakawa: University of Tokyo
J. Tignon: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
S. Dhillon: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
S. Balibar: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
J. Mangeney: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
A. Cottet: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité
T. Kontos: Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25733-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25733-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25733-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25733-x