EconPapers    
Economics at your fingertips  
 

Reactive wear protection through strong and deformable oxide nanocomposite surfaces

Chang Liu (), Zhiming Li, Wenjun Lu, Yan Bao, Wenzhen Xia, Xiaoxiang Wu, Huan Zhao, Baptiste Gault, Chenglong Liu, Michael Herbig, Alfons Fischer, Gerhard Dehm, Ge Wu () and Dierk Raabe ()
Additional contact information
Chang Liu: Max-Planck-Institut für Eisenforschung
Zhiming Li: Central South University
Wenjun Lu: Max-Planck-Institut für Eisenforschung
Yan Bao: City University of Hong Kong
Wenzhen Xia: Max-Planck-Institut für Eisenforschung
Xiaoxiang Wu: Max-Planck-Institut für Eisenforschung
Huan Zhao: Max-Planck-Institut für Eisenforschung
Baptiste Gault: Max-Planck-Institut für Eisenforschung
Chenglong Liu: City University of Hong Kong
Michael Herbig: Max-Planck-Institut für Eisenforschung
Alfons Fischer: Max-Planck-Institut für Eisenforschung
Gerhard Dehm: Max-Planck-Institut für Eisenforschung
Ge Wu: Max-Planck-Institut für Eisenforschung
Dierk Raabe: Max-Planck-Institut für Eisenforschung

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract Wear-related energy and material loss cost over 2500 Billion Euro per year. Traditional wisdom suggests that high-strength materials reveal low wear rates, yet, their plastic deformation mechanisms also influence their wear performance. High strength and homogeneous deformation behavior, which allow accommodating plastic strain without cracking or localized brittle fracture, are crucial for developing wear-resistant metals. Here, we present an approach to achieve superior wear resistance via in-situ formation of a strong and deformable oxide nanocomposite surface during wear, by reaction of the metal surface with its oxidative environment, a principle that we refer to as ‘reactive wear protection’. We design a TiNbZr-Ag alloy that forms an amorphous-crystalline oxidic nanocomposite surface layer upon dry sliding. The strong (2.4 GPa yield strength) and deformable (homogeneous deformation to 20% strain) nanocomposite surface reduces the wear rate of the TiNbZr-Ag alloy by an order of magnitude. The reactive wear protection strategy offers a pathway for designing ultra-wear resistant alloys, where otherwise brittle oxides are turned to be strong and deformable for improving wear resistance.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25778-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25778-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25778-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25778-y