EconPapers    
Economics at your fingertips  
 

Probabilistic tsunami forecasting for early warning

J. Selva (), S. Lorito, M. Volpe, F. Romano, R. Tonini, P. Perfetti, F. Bernardi, M. Taroni, A. Scala, A. Babeyko, F. Løvholt, S. J. Gibbons, J. Macías, M. J. Castro, J. M. González-Vida, C. Sánchez-Linares, H. B. Bayraktar, R. Basili, F. E. Maesano, M. M. Tiberti, F. Mele, A. Piatanesi and A. Amato
Additional contact information
J. Selva: Istituto Nazionale di Geofisica e Vulcanologia
S. Lorito: Istituto Nazionale di Geofisica e Vulcanologia
M. Volpe: Istituto Nazionale di Geofisica e Vulcanologia
F. Romano: Istituto Nazionale di Geofisica e Vulcanologia
R. Tonini: Istituto Nazionale di Geofisica e Vulcanologia
P. Perfetti: Istituto Nazionale di Geofisica e Vulcanologia
F. Bernardi: Istituto Nazionale di Geofisica e Vulcanologia
M. Taroni: Istituto Nazionale di Geofisica e Vulcanologia
A. Scala: University of Naples
A. Babeyko: German Research Centre for Geosciences (GFZ)
F. Løvholt: Norwegian Geotechnical Institute (NGI)
S. J. Gibbons: Norwegian Geotechnical Institute (NGI)
J. Macías: Universidad de Málaga
M. J. Castro: Universidad de Málaga
J. M. González-Vida: Universidad de Málaga
C. Sánchez-Linares: Universidad de Málaga
H. B. Bayraktar: Istituto Nazionale di Geofisica e Vulcanologia
R. Basili: Istituto Nazionale di Geofisica e Vulcanologia
F. E. Maesano: Istituto Nazionale di Geofisica e Vulcanologia
M. M. Tiberti: Istituto Nazionale di Geofisica e Vulcanologia
F. Mele: Istituto Nazionale di Geofisica e Vulcanologia
A. Piatanesi: Istituto Nazionale di Geofisica e Vulcanologia
A. Amato: Istituto Nazionale di Geofisica e Vulcanologia

Nature Communications, 2021, vol. 12, issue 1, 1-14

Abstract: Abstract Tsunami warning centres face the challenging task of rapidly forecasting tsunami threat immediately after an earthquake, when there is high uncertainty due to data deficiency. Here we introduce Probabilistic Tsunami Forecasting (PTF) for tsunami early warning. PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Impact forecasts and resulting recommendations become progressively less uncertain as new data become available. Here we report an implementation for near-source early warning and test it systematically by hindcasting the great 2010 M8.8 Maule (Chile) and the well-studied 2003 M6.8 Zemmouri-Boumerdes (Algeria) tsunamis, as well as all the Mediterranean earthquakes that triggered alert messages at the Italian Tsunami Warning Centre since its inception in 2015, demonstrating forecasting accuracy over a wide range of magnitudes and earthquake types.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-25815-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25815-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-25815-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25815-w