Multiple evolutionary origins and losses of tooth complexity in squamates
Fabien Lafuma (),
Ian J. Corfe (),
Julien Clavel and
Nicolas Di-Poï ()
Additional contact information
Fabien Lafuma: Helsinki Institute of Life Science, University of Helsinki
Ian J. Corfe: Helsinki Institute of Life Science, University of Helsinki
Julien Clavel: Department of Life Sciences, The Natural History Museum
Nicolas Di-Poï: Helsinki Institute of Life Science, University of Helsinki
Nature Communications, 2021, vol. 12, issue 1, 1-13
Abstract:
Abstract Teeth act as tools for acquiring and processing food, thus holding a prominent role in vertebrate evolution. In mammals, dental-dietary adaptations rely on tooth complexity variations controlled by cusp number and pattern. Complexity increase through cusp addition has dominated the diversification of mammals. However, studies of Mammalia alone cannot reveal patterns of tooth complexity conserved throughout vertebrate evolution. Here, we use morphometric and phylogenetic comparative methods across fossil and extant squamates to show they also repeatedly evolved increasingly complex teeth, but with more flexibility than mammals. Since the Late Jurassic, multiple-cusped teeth evolved over 20 times independently from a single-cusped common ancestor. Squamates frequently lost cusps and evolved varied multiple-cusped morphologies at heterogeneous rates. Tooth complexity evolved in correlation with changes in plant consumption, resulting in several major increases in speciation. Complex teeth played a critical role in vertebrate evolution outside Mammalia, with squamates exemplifying a more labile system of dental-dietary evolution.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26285-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26285-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26285-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().