Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations
Jan Audun Rasmussen,
Nicolas Thibault () and
Christian Rasmussen
Additional contact information
Jan Audun Rasmussen: Museum Mors
Nicolas Thibault: University of Copenhagen
Christian Rasmussen: GLOBE Institute, University of Copenhagen
Nature Communications, 2021, vol. 12, issue 1, 1-14
Abstract:
Abstract Meso-Cenozoic evidence suggests links between changes in the expression of orbital changes and millennia-scale climatic- and biotic variations, but proof for such shifts in orbital cyclicity farther back in geological time is lacking. Here, we report a 469-million-year-old Palaeozoic energy transfer from precession to 405 kyr eccentricity cycles that coincides with the start of the Great Ordovician Biodiversification Event (GOBE). Based on an early Middle Ordovician astronomically calibrated cyclostratigraphic framework we find this orbital change to succeed the onset of icehouse conditions by 200,000 years, suggesting a climatic origin. Recently, this icehouse was postulated to be facilitated by extra-terrestrial dust associated with an asteroid breakup. Our timescale, however, shows the meteor bombardment to post-date the icehouse by 800,000 years, instead pausing the GOBE 600,000 years after its initiation. Resolving Milankovitch cyclicity in deep time thus suggests universal orbital control in modulating climate, and maybe even biodiversity accumulation, through geological time.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26396-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26396-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26396-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().