EconPapers    
Economics at your fingertips  
 

In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering

J. W. Lee, K. Eom, T. R. Paudel, B. Wang, H. Lu, H. X. Huyan, S. Lindemann, S. Ryu, H. Lee, T. H. Kim, Y. Yuan, J. A. Zorn, S. Lei, W. P. Gao, T. Tybell, V. Gopalan, X. Q. Pan, A. Gruverman, L. Q. Chen, E. Y. Tsymbal and C. B. Eom ()
Additional contact information
J. W. Lee: University of Wisconsin-Madison
K. Eom: University of Wisconsin-Madison
T. R. Paudel: University of Nebraska
B. Wang: The Pennsylvania State University
H. Lu: University of Nebraska
H. X. Huyan: University of California
S. Lindemann: University of Wisconsin-Madison
S. Ryu: University of Wisconsin-Madison
H. Lee: University of Wisconsin-Madison
T. H. Kim: University of Wisconsin-Madison
Y. Yuan: The Pennsylvania State University
J. A. Zorn: The Pennsylvania State University
S. Lei: The Pennsylvania State University
W. P. Gao: University of California
T. Tybell: Norwegian University of Science and Technology
V. Gopalan: The Pennsylvania State University
X. Q. Pan: University of California
A. Gruverman: University of Nebraska
L. Q. Chen: The Pennsylvania State University
E. Y. Tsymbal: University of Nebraska
C. B. Eom: University of Wisconsin-Madison

Nature Communications, 2021, vol. 12, issue 1, 1-8

Abstract: Abstract The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO3 thin films. Theoretical calculations predict the key role of the BaTiO3/PrScO3 $${({{{{{\boldsymbol{110}}}}}})}_{{{{{{\bf{O}}}}}}}$$ ( 110 ) O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-26660-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26660-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-26660-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26660-7