Nanoscale π-conjugated ladders
Stefanie A. Meißner,
Theresa Eder,
Tristan J. Keller,
David A. Hofmeister,
Sebastian Spicher,
Stefan-S. Jester,
Jan Vogelsang,
Stefan Grimme,
John M. Lupton () and
Sigurd Höger ()
Additional contact information
Stefanie A. Meißner: Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Theresa Eder: Universität Regensburg
Tristan J. Keller: Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
David A. Hofmeister: Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Sebastian Spicher: University of Bonn
Stefan-S. Jester: Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Jan Vogelsang: Universität Regensburg
Stefan Grimme: University of Bonn
John M. Lupton: Universität Regensburg
Sigurd Höger: Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract It is challenging to increase the rigidity of a macromolecule while maintaining solubility. Established strategies rely on templating by dendrons, or by encapsulation in macrocycles, and exploit supramolecular arrangements with limited robustness. Covalently bonded structures have entailed intramolecular coupling of units to resemble the structure of an alternating tread ladder with rungs composed of a covalent bond. We introduce a versatile concept of rigidification in which two rigid-rod polymer chains are repeatedly covalently associated along their contour by stiff molecular connectors. This approach yields almost perfect ladder structures with two well-defined π-conjugated rails and discretely spaced nanoscale rungs, easily visualized by scanning tunnelling microscopy. The enhancement of molecular rigidity is confirmed by the fluorescence depolarization dynamics and complemented by molecular-dynamics simulations. The covalent templating of the rods leads to self-rigidification that gives rise to intramolecular electronic coupling, enhancing excitonic coherence. The molecules are characterized by unprecedented excitonic mobility, giving rise to excitonic interactions on length scales exceeding 100 nm. Such interactions lead to deterministic single-photon emission from these giant rigid macromolecules, with potential implications for energy conversion in optoelectronic devices.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26688-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26688-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26688-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().