Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging
Xianglei Liu,
Artiom Skripka,
Yingming Lai,
Cheng Jiang,
Jingdan Liu,
Fiorenzo Vetrone () and
Jinyang Liang ()
Additional contact information
Xianglei Liu: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Artiom Skripka: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Yingming Lai: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Cheng Jiang: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Jingdan Liu: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Fiorenzo Vetrone: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Jinyang Liang: Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes
Nature Communications, 2021, vol. 12, issue 1, 1-9
Abstract:
Abstract Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell NaGdF4:Er3+,Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological sample at single-cell resolution.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26701-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26701-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26701-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().