EconPapers    
Economics at your fingertips  
 

Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap

Hangyong Shan (), Lukas Lackner, Bo Han, Evgeny Sedov, Christoph Rupprecht, Heiko Knopf, Falk Eilenberger, Johannes Beierlein, Nils Kunte, Martin Esmann, Kentaro Yumigeta, Kenji Watanabe, Takashi Taniguchi, Sebastian Klembt, Sven Höfling, Alexey V. Kavokin, Sefaattin Tongay (), Christian Schneider () and Carlos Antón-Solanas ()
Additional contact information
Hangyong Shan: Carl von Ossietzky University
Lukas Lackner: Carl von Ossietzky University
Bo Han: Carl von Ossietzky University
Evgeny Sedov: Westlake University
Christoph Rupprecht: Universität Würzburg
Heiko Knopf: Friedrich Schiller University
Falk Eilenberger: Friedrich Schiller University
Johannes Beierlein: Universität Würzburg
Nils Kunte: Carl von Ossietzky University
Martin Esmann: Carl von Ossietzky University
Kentaro Yumigeta: Arizona State University
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Sebastian Klembt: Universität Würzburg
Sven Höfling: Universität Würzburg
Alexey V. Kavokin: Westlake University
Sefaattin Tongay: Arizona State University
Christian Schneider: Carl von Ossietzky University
Carlos Antón-Solanas: Carl von Ossietzky University

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon intrinsically aligned with the control of light-matter coupling. It is canonical for laser oscillation, emerges in the superradiance of collective emitters, and has been investigated in bosonic condensates of thermalized light, as well as exciton-polaritons. Our room temperature experiments show the strong light-matter coupling between microcavity photons and excitons in atomically thin WSe2. We evidence the density-dependent expansion of spatial and temporal coherence of the emitted light from the spatially confined system ground-state, which is accompanied by a threshold-like response of the emitted light intensity. Additionally, valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K’ polaritons via the valley-Zeeman-effect. Our findings validate the potential of atomically thin crystals as versatile components of coherent light-sources, and in valleytronic applications at room temperature.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-26715-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26715-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-26715-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26715-9