Evidence for spin current driven Bose-Einstein condensation of magnons
B. Divinskiy,
H. Merbouche,
V. E. Demidov (),
K. O. Nikolaev,
L. Soumah,
D. Gouéré,
R. Lebrun,
V. Cros,
Jamal Ben Youssef,
P. Bortolotti,
A. Anane and
S. O. Demokritov
Additional contact information
B. Divinskiy: Institute for Applied Physics, University of Muenster
H. Merbouche: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
V. E. Demidov: Institute for Applied Physics, University of Muenster
K. O. Nikolaev: Institute for Applied Physics, University of Muenster
L. Soumah: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
D. Gouéré: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
R. Lebrun: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
V. Cros: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Jamal Ben Youssef: LABSTICC, UMR 6285 CNRS, Université de Bretagne Occidentale
P. Bortolotti: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
A. Anane: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
S. O. Demokritov: Institute for Applied Physics, University of Muenster
Nature Communications, 2021, vol. 12, issue 1, 1-7
Abstract:
Abstract The quanta of magnetic excitations – magnons – are known for their unique ability to undergo Bose-Einstein condensation at room temperature. This fascinating phenomenon reveals itself as a spontaneous formation of a coherent state under the influence of incoherent stimuli. Spin currents have been predicted to offer electronic control of Bose-Einstein condensates, but this phenomenon has not been experimentally evidenced up to now. Here we show that current-driven Bose-Einstein condensation can be achieved in nanometer-thick films of magnetic insulators with tailored nonlinearities and minimized magnon interactions. We demonstrate that, above a certain threshold, magnons injected by the spin current overpopulate the lowest-energy level forming a highly coherent spatially extended state. We quantify the chemical potential of the driven magnon gas and show that, at the critical current, it reaches the energy of the lowest magnon level. Our results pave the way for implementation of integrated microscopic quantum magnonic and spintronic devices.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26790-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26790-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26790-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().