EconPapers    
Economics at your fingertips  
 

Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries

H. Hohyun Sun, Un-Hyuck Kim, Jeong-Hyeon Park, Sang-Wook Park, Dong-Hwa Seo, Adam Heller, C. Buddie Mullins (), Chong S. Yoon and Yang-Kook Sun ()
Additional contact information
H. Hohyun Sun: The University of Texas at Austin
Un-Hyuck Kim: Hanyang University
Jeong-Hyeon Park: Hanyang University
Sang-Wook Park: Ulsan National Institute of Science and Technology (UNIST)
Dong-Hwa Seo: Ulsan National Institute of Science and Technology (UNIST)
Adam Heller: The University of Texas at Austin
C. Buddie Mullins: The University of Texas at Austin
Chong S. Yoon: Hanyang University
Yang-Kook Sun: Hanyang University

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g−1. Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-26815-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26815-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-26815-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26815-6