The mechanics of landslide mobility with erosion
Shiva P. Pudasaini () and
Michael Krautblatter
Additional contact information
Shiva P. Pudasaini: Technical University of Munich, Chair of Landslide Research
Michael Krautblatter: Technical University of Munich, Chair of Landslide Research
Nature Communications, 2021, vol. 12, issue 1, 1-15
Abstract:
Abstract Erosion can significantly increase the destructive power of a landslide by amplifying its volume, mobility and impact force. The threat posed by an erosive landslide is linked to its mobility. No mechanical condition has yet been presented for when, how and how much energy erosive landslides gain or lose. Here, we pioneer a mechanical model for the energy budget of erosive landslides that controls enhanced or reduced mobility. Inertia is related to an entrainment velocity, is a fundamentally new understanding. This ascertains the true inertia of erosive landslides, making a breakthrough in correctly determining the landslide mobility. Erosion velocity, which regulates the energy budget, determines the enhanced or reduced mobility. Newly developed energy generator offers the first-ever mechanical quantification of erosional energy and a precise description of mobility. This addresses the long-standing question of why many erosive landslides generate higher mobility, while others reduce mobility. We demonstrate that erosion and entrainment are different processes. Landslides gain energy and enhance mobility if the erosion velocity exceeds the entrainment velocity. Energy velocity delineates distinct excess energy regimes. Newly introduced mobility scaling and erosion number deliver the explicit measure of mobility. Presented dynamical equations correctly include erosion induced net momentum production.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26959-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26959-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26959-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().