Measuring the photoelectron emission delay in the molecular frame
Jonas Rist (),
Kim Klyssek,
Nikolay M. Novikovskiy,
Max Kircher,
Isabel Vela-Pérez,
Daniel Trabert,
Sven Grundmann,
Dimitrios Tsitsonis,
Juliane Siebert,
Angelina Geyer,
Niklas Melzer,
Christian Schwarz,
Nils Anders,
Leon Kaiser,
Kilian Fehre,
Alexander Hartung,
Sebastian Eckart,
Lothar Ph. H. Schmidt,
Markus S. Schöffler,
Vernon T. Davis,
Joshua B. Williams,
Florian Trinter,
Reinhard Dörner,
Philipp V. Demekhin () and
Till Jahnke ()
Additional contact information
Jonas Rist: J. W. Goethe-Universität
Kim Klyssek: J. W. Goethe-Universität
Nikolay M. Novikovskiy: Universität Kassel
Max Kircher: J. W. Goethe-Universität
Isabel Vela-Pérez: J. W. Goethe-Universität
Daniel Trabert: J. W. Goethe-Universität
Sven Grundmann: J. W. Goethe-Universität
Dimitrios Tsitsonis: J. W. Goethe-Universität
Juliane Siebert: J. W. Goethe-Universität
Angelina Geyer: J. W. Goethe-Universität
Niklas Melzer: J. W. Goethe-Universität
Christian Schwarz: J. W. Goethe-Universität
Nils Anders: J. W. Goethe-Universität
Leon Kaiser: J. W. Goethe-Universität
Kilian Fehre: J. W. Goethe-Universität
Alexander Hartung: J. W. Goethe-Universität
Sebastian Eckart: J. W. Goethe-Universität
Lothar Ph. H. Schmidt: J. W. Goethe-Universität
Markus S. Schöffler: J. W. Goethe-Universität
Vernon T. Davis: University of Nevada
Joshua B. Williams: University of Nevada
Florian Trinter: Deutsches Elektronen-Synchrotron DESY
Reinhard Dörner: J. W. Goethe-Universität
Philipp V. Demekhin: Universität Kassel
Till Jahnke: J. W. Goethe-Universität
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion’s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons’ emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-26994-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26994-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-26994-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().