Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet
Licong Peng (),
Kosuke Karube,
Yasujiro Taguchi,
Naoto Nagaosa,
Yoshinori Tokura and
Xiuzhen Yu ()
Additional contact information
Licong Peng: RIKEN Center for Emergent Matter Science (CEMS)
Kosuke Karube: RIKEN Center for Emergent Matter Science (CEMS)
Yasujiro Taguchi: RIKEN Center for Emergent Matter Science (CEMS)
Naoto Nagaosa: RIKEN Center for Emergent Matter Science (CEMS)
Yoshinori Tokura: RIKEN Center for Emergent Matter Science (CEMS)
Xiuzhen Yu: RIKEN Center for Emergent Matter Science (CEMS)
Nature Communications, 2021, vol. 12, issue 1, 1-7
Abstract:
Abstract Driving and controlling single-skyrmion motion promises skyrmion-based spintronic applications. Recently progress has been made in moving skyrmionic bubbles in thin-film heterostructures and low-temperature chiral skyrmions in the FeGe helimagnet by electric current. Here, we report the motion tracking and control of a single skyrmion at room temperature in the chiral-lattice magnet Co9Zn9Mn2 using nanosecond current pulses. We have directly observed that the skyrmion Hall motion reverses its direction upon the reversal of skyrmion topological number using Lorentz transmission electron microscopy. Systematic measurements of the single-skyrmion trace as a function of electric current reveal a dynamic transition from the static pinned state to the linear flow motion via a creep event, in agreement with the theoretical prediction. We have clarified the role of skyrmion pinning and evaluated the intrinsic skyrmion Hall angle and the skyrmion velocity in the course of the dynamic transition. Our results pave a way to skyrmion applications in spintronic devices.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-27073-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27073-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-27073-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().