EconPapers    
Economics at your fingertips  
 

Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin

Dukas Jurėnas (), Leonardo Talachia Rosa, Martial Rey, Julia Chamot-Rooke, Rémi Fronzes () and Eric Cascales ()
Additional contact information
Dukas Jurėnas: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université – CNRS, UMR 7255
Leonardo Talachia Rosa: Structure and Function of Bacterial Nanomachines, Institut Européen de Chimie et Biologie, Univ. Bordeaux – CNRS, UMR 5234 Microbiologie Fondamentale et Pathogénicité
Martial Rey: Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur – CNRS, USR 2000
Julia Chamot-Rooke: Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur – CNRS, USR 2000
Rémi Fronzes: Structure and Function of Bacterial Nanomachines, Institut Européen de Chimie et Biologie, Univ. Bordeaux – CNRS, UMR 5234 Microbiologie Fondamentale et Pathogénicité
Eric Cascales: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université – CNRS, UMR 7255

Nature Communications, 2021, vol. 12, issue 1, 1-11

Abstract: Abstract Bacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-27388-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27388-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-27388-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27388-0