Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping
Huali Wu,
Ji Li,
Kun Qi,
Yang Zhang,
Eddy Petit,
Wensen Wang,
Valérie Flaud,
Nicolas Onofrio,
Bertrand Rebiere,
Lingqi Huang,
Chrystelle Salameh,
Luc Lajaunie,
Philippe Miele and
Damien Voiry ()
Additional contact information
Huali Wu: Université Montpellier, ENSCM, CNRS
Ji Li: Université Montpellier, ENSCM, CNRS
Kun Qi: Université Montpellier, ENSCM, CNRS
Yang Zhang: Université Montpellier, ENSCM, CNRS
Eddy Petit: Université Montpellier, ENSCM, CNRS
Wensen Wang: Université Montpellier, ENSCM, CNRS
Valérie Flaud: University of Montpellier, ENSCM, CNRS
Nicolas Onofrio: Université Montpellier, ENSCM, CNRS
Bertrand Rebiere: University of Montpellier, ENSCM, CNRS
Lingqi Huang: The Chinese University of Hong Kong
Chrystelle Salameh: Université Montpellier, ENSCM, CNRS
Luc Lajaunie: Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real
Philippe Miele: Université Montpellier, ENSCM, CNRS
Damien Voiry: Université Montpellier, ENSCM, CNRS
Nature Communications, 2021, vol. 12, issue 1, 1-11
Abstract:
Abstract The conversion of CO2 into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO2 into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C2+ species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms. As a result, we achieve a high Faradaic efficiency for the C2+ formation of ≈80% and full-cell energy efficiency of 20.3% with a specific current density of 261.4 mA cm−2 for C2+ products.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-021-27456-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27456-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-27456-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().