Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy
D. Mayer,
F. Lever,
D. Picconi (),
J. Metje,
S. Alisauskas,
F. Calegari,
S. Düsterer,
C. Ehlert,
R. Feifel,
M. Niebuhr,
B. Manschwetus,
M. Kuhlmann,
T. Mazza,
M. S. Robinson,
R. J. Squibb,
A. Trabattoni,
M. Wallner,
P. Saalfrank,
T. J. A. Wolf and
M. Gühr ()
Additional contact information
D. Mayer: Institut für Physik und Astronomie, Universität Potsdam
F. Lever: Institut für Physik und Astronomie, Universität Potsdam
D. Picconi: Universität Potsdam
J. Metje: Institut für Physik und Astronomie, Universität Potsdam
S. Alisauskas: Deutsches Elektronen Synchrotron (DESY)
F. Calegari: Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY)
S. Düsterer: Deutsches Elektronen Synchrotron (DESY)
C. Ehlert: Heidelberg Institute for Theoretical Studies, HITS gGmbH
R. Feifel: University of Gothenburg
M. Niebuhr: Institut für Physik und Astronomie, Universität Potsdam
B. Manschwetus: Deutsches Elektronen Synchrotron (DESY)
M. Kuhlmann: Deutsches Elektronen Synchrotron (DESY)
T. Mazza: European XFEL
M. S. Robinson: Institut für Physik und Astronomie, Universität Potsdam
R. J. Squibb: University of Gothenburg
A. Trabattoni: Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY)
M. Wallner: University of Gothenburg
P. Saalfrank: Universität Potsdam
T. J. A. Wolf: Stanford PULSE Institute, SLAC National Accelerator Laboratory
M. Gühr: Institut für Physik und Astronomie, Universität Potsdam
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-27908-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27908-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-27908-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().