EconPapers    
Economics at your fingertips  
 

Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing

Junliang Dong (), Alessandro Tomasino, Giacomo Balistreri, Pei You, Anton Vorobiov, Étienne Charette, Boris Le Drogoff, Mohamed Chaker, Aycan Yurtsever, Salvatore Stivala, Maria A. Vincenti, Costantino Angelis, Detlef Kip, José Azaña and Roberto Morandotti ()
Additional contact information
Junliang Dong: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Alessandro Tomasino: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Giacomo Balistreri: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Pei You: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Anton Vorobiov: Faculty of Electrical Engineering, Helmut Schmidt University
Étienne Charette: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Boris Le Drogoff: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Mohamed Chaker: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Aycan Yurtsever: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Salvatore Stivala: University of Palermo, Viale delle Scienze
Maria A. Vincenti: University of Brescia
Costantino Angelis: University of Brescia
Detlef Kip: Faculty of Electrical Engineering, Helmut Schmidt University
José Azaña: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications
Roberto Morandotti: Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Waveguides play a pivotal role in the full deployment of terahertz communication systems. Besides signal transporting, innovative terahertz waveguides are required to provide versatile signal-processing functionalities. Despite fundamental components, such as Bragg gratings, have been recently realized, they typically rely on complex hybridization, in turn making it extremely challenging to go beyond the most elementary functions. Here, we propose a universal approach, in which multiscale-structured Bragg gratings can be directly etched on metal-wires. Such an approach, in combination with diverse waveguide designs, allows for the realization of a unique platform with remarkable structural simplicity, yet featuring unprecedented signal-processing capabilities. As an example, we introduce a four-wire waveguide geometry, amenable to support the low-loss and low-dispersion propagation of polarization-division multiplexed terahertz signals. Furthermore, by engraving on the wires judiciously designed Bragg gratings based on multiscale structures, it is possible to independently manipulate two polarization-division multiplexed terahertz signals. This platform opens up new exciting perspectives for exploiting the polarization degree of freedom and ultimately boosting the capacity and spectral efficiency of future terahertz networks.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-27993-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27993-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-27993-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27993-7