Mechanically robust supramolecular polymer co-assemblies
Julien Sautaux,
Franziska Marx,
Ilja Gunkel,
Christoph Weder () and
Stephen Schrettl ()
Additional contact information
Julien Sautaux: University of Fribourg
Franziska Marx: University of Fribourg
Ilja Gunkel: University of Fribourg
Christoph Weder: University of Fribourg
Stephen Schrettl: University of Fribourg
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract Supramolecular polymers are formed through non-covalent, directional interactions between monomeric building blocks. The assembly of these materials is reversible, which enables functions such as healing, repair, or recycling. However, supramolecular polymers generally fail to match the mechanical properties of conventional commodity plastics. Here we demonstrate how strong, stiff, tough, and healable materials can be accessed through the combination of two metallosupramolecular polymers with complementary mechanical properties that feature the same metal-ligand complex as binding motif. Co-assembly yields materials with micro-phase separated hard and soft domains and the mechanical properties can be tailored by simply varying the ratio of the two constituents. On account of toughening and physical cross-linking effects, this approach affords materials that display higher strength, toughness, or failure strain than either metallosupramolecular polymer alone. The possibility to combine supramolecular building blocks in any ratio further permits access to compositionally graded objects with a spatially modulated mechanical behavior.
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28017-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28017-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28017-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().