EconPapers    
Economics at your fingertips  
 

Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides

Shuai Zhang, Baichang Li, Xinzhong Chen, Francesco L. Ruta, Yinming Shao, Aaron J. Sternbach, A. S. McLeod, Zhiyuan Sun, Lin Xiong, S. L. Moore, Xinyi Xu, Wenjing Wu, Sara Shabani, Lin Zhou, Zhiying Wang, Fabian Mooshammer, Essance Ray, Nathan Wilson, P. J. Schuck, C. R. Dean, A. N. Pasupathy, Michal Lipson, Xiaodong Xu, Xiaoyang Zhu, A. J. Millis, Mengkun Liu, James C. Hone and D. N. Basov ()
Additional contact information
Shuai Zhang: Columbia University
Baichang Li: Columbia University
Xinzhong Chen: Brookhaven National Laboratory
Francesco L. Ruta: Columbia University
Yinming Shao: Columbia University
Aaron J. Sternbach: Columbia University
A. S. McLeod: Columbia University
Zhiyuan Sun: Columbia University
Lin Xiong: Columbia University
S. L. Moore: Columbia University
Xinyi Xu: Columbia University
Wenjing Wu: Columbia University
Sara Shabani: Columbia University
Lin Zhou: Columbia University
Zhiying Wang: Columbia University
Fabian Mooshammer: Columbia University
Essance Ray: University of Washington
Nathan Wilson: University of Washington
P. J. Schuck: Columbia University
C. R. Dean: Columbia University
A. N. Pasupathy: Columbia University
Michal Lipson: Columbia University
Xiaodong Xu: University of Washington
Xiaoyang Zhu: Columbia University
A. J. Millis: Columbia University
Mengkun Liu: Brookhaven National Laboratory
James C. Hone: Columbia University
D. N. Basov: Columbia University

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Excitons play a dominant role in the optoelectronic properties of atomically thin van der Waals (vdW) semiconductors. These excitons are amenable to on-demand engineering with diverse control knobs, including dielectric screening, interlayer hybridization, and moiré potentials. However, external stimuli frequently yield heterogeneous excitonic responses at the nano- and meso-scales, making their spatial characterization with conventional diffraction-limited optics a formidable task. Here, we use a scattering-type scanning near-field optical microscope (s-SNOM) to acquire exciton spectra in atomically thin transition metal dichalcogenide microcrystals with previously unattainable 20 nm resolution. Our nano-optical data revealed material- and stacking-dependent exciton spectra of MoSe2, WSe2, and their heterostructures. Furthermore, we extracted the complex dielectric function of these prototypical vdW semiconductors. s-SNOM hyperspectral images uncovered how the dielectric screening modifies excitons at length scales as short as few nanometers. This work paves the way towards understanding and manipulation of excitons in atomically thin layers at the nanoscale.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28117-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28117-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28117-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28117-x