Perfect flat band with chirality and charge ordering out of strong spin-orbit interaction
Hiroki Nakai () and
Chisa Hotta ()
Additional contact information
Hiroki Nakai: University of Tokyo
Chisa Hotta: University of Tokyo
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract Spin-orbit interaction has established itself as a key player in the emergent phenomena in modern condensed matter, including topological insulator, spin liquid and spin-dependent transports. However, its function is rather limited to adding topological nature to band kinetics, leaving behind the growing interest in the direct interplay with electron correlation. Here, we prove by our spinor line graph theory that a very strong spin-orbit interaction realized in 5d pyrochlore electronic systems generates multiply degenerate perfect flat bands. Unlike any of the previous flat bands, the electrons in this band localize in real space by destructively interfering with each other in a spin selective manner governed by the SU(2) gauge field. These electrons avoid the Coulomb interaction by self-organizing their localized wave functions, which may lead to a flat-band state with a stiff spin chirality. It also causes perfectly trimerized charge ordering, which may explain the recently discovered exotic low-temperature insulating phase of CsW2O6.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28132-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28132-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28132-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().