Heterospin frustration in a metal-fullerene-bonded semiconductive antiferromagnet
Yongbing Shen (),
Mengxing Cui,
Shinya Takaishi,
Hideyuki Kawasoko,
Kunihisa Sugimoto,
Takao Tsumuraya,
Akihiro Otsuka,
Eunsang Kwon,
Takefumi Yoshida,
Norihisa Hoshino,
Kazuhiko Kawachi,
Yasuhiko Kasama,
Tomoyuki Akutagawa,
Tomoteru Fukumura and
Masahiro Yamashita ()
Additional contact information
Yongbing Shen: Tohoku University
Mengxing Cui: Tohoku University
Shinya Takaishi: Tohoku University
Hideyuki Kawasoko: Tohoku University
Kunihisa Sugimoto: Diffraction & Scattering Division Synchrotron Radiation Research Institute
Takao Tsumuraya: Kumamoto University
Akihiro Otsuka: Kyoto University
Eunsang Kwon: Tohoku University
Takefumi Yoshida: Tohoku University
Norihisa Hoshino: Tohoku University
Kazuhiko Kawachi: Idea International Co., Ltd.
Yasuhiko Kasama: Idea International Co., Ltd.
Tomoyuki Akutagawa: Tohoku University
Tomoteru Fukumura: Tohoku University
Masahiro Yamashita: Tohoku University
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract Lithium-ion-encapsulated fullerenes (Li+@C60) are 3D superatoms with rich oxidative states. Here we show a conductive and magnetically frustrated metal–fullerene-bonded framework {[Cu4(Li@C60)(L)(py)4](NTf2)(hexane)}n (1) (L = 1,2,4,5-tetrakis(methanesulfonamido)benzene, py = pyridine, NTf2− = bis(trifluoromethane)sulfonamide anion) prepared from redox-active dinuclear metal complex Cu2(L)(py)4 and lithium-ion-encapsulated fullerene salt (Li+@C60)(NTf2−). Electron donor Cu2(L)(py)2 bonds to acceptor Li+@C60 via eight Cu‒C bonds. Cu–C bond formation stems from spontaneous charge transfer (CT) between Cu2(L)(py)4 and (Li+@C60)(NTf2−) by removing the two-terminal py molecules, yielding triplet ground state [Cu2(L)(py)2]+(Li+@C60•−), evidenced by absorption and electron paramagnetic resonance (EPR) spectra, magnetic properties and quantum chemical calculations. Moreover, Li+@C60•− radicals (S = ½) and Cu2+ ions (S = ½) interact antiferromagnetically in triangular spin lattices in the absence of long-range magnetic ordering to 1.8 K. The low-temperature heat capacity indicated that compound 1 is a potential candidate for an S = ½ quantum spin liquid (QSL).
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28134-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28134-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28134-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().