EconPapers    
Economics at your fingertips  
 

Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism

Kenta Kimura (), Yutaro Otake and Tsuyoshi Kimura
Additional contact information
Kenta Kimura: University of Tokyo
Yutaro Otake: University of Tokyo
Tsuyoshi Kimura: University of Tokyo

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Conventional magnetic memories rely on bistable magnetic states, such as the up and down magnetization states in ferromagnets. Increasing the number of stable magnetic states in each cell, preferably composed of antiferromagnets without stray fields, promises to achieve higher-capacity memories. Thus far, such multi-stable antiferromagnetic states have been extensively studied in conducting systems. Here, we report on a striking optical response in the magnetoelectric collinear antiferromagnet Bi2CuO4, which is an insulating version of the representative spintronic material, CuMnAs, with four stable Néel vector orientations. We find that, due to a magnetoelectric effect in a visible range, which is enhanced by a peculiar local environment of Cu ions, absorption coefficient takes three discrete values depending on an angle between the propagation vector of light and the Néel vector—a phenomenon that we term antiferromagnetic trichroism. Furthermore, using this antiferromagnetic trichroism, we successfully visualize field-driven reversal and rotation of the Néel vector.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28215-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28215-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28215-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28215-w