EconPapers    
Economics at your fingertips  
 

Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio

Nicholas Schliffke (), Jeroen Hunen, Mark B. Allen, Valentina Magni and Frédéric Gueydan
Additional contact information
Nicholas Schliffke: Durham University
Jeroen Hunen: Durham University
Mark B. Allen: Durham University
Valentina Magni: University of Oslo
Frédéric Gueydan: Université Montpellier

Nature Communications, 2022, vol. 13, issue 1, 1-7

Abstract: Abstract Spreading centre jumps are a common feature of oceanic back-arc basins. Jumps are conventionally suggested to be triggered by plate velocity changes, pre-existing weaknesses, or punctuated events such as the opening of slab windows. Here, we present 3D numerical models of back-arc spreading centre jumps evolving naturally in a homogeneous subduction system surrounded by continents without a trigger event. Spreading centres jump towards their subduction zone if the distance from trench to spreading centre becomes too long. In particular, jumps to a new spreading centre occur when the resistance on the boundary transform faults enabling relative motion of back-arc and neighbouring plates is larger than the resistance to break the overriding plate closer to trench. Time and distance of spreading centres jumps are, thus, controlled by the ratio between the transform fault and overriding plate strengths. Despite being less complex than natural systems, our models explain why narrow subducting plates (e.g. Calabrian slab), have more frequent and closely-spaced spreading jumps than wider subduction zones (e.g. Scotia). It also explains why wide back-arc basins undergo no spreading centre jumps in their life cycle.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28228-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28228-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28228-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28228-5