EconPapers    
Economics at your fingertips  
 

Shaping lightwaves in time and frequency for optical fiber communication

Junho Cho (), Xi Chen, Greg Raybon, Di Che, Ellsworth Burrows, Samuel Olsson and Robert Tkach
Additional contact information
Junho Cho: Nokia Bell Labs
Xi Chen: Nokia Bell Labs
Greg Raybon: Nokia Bell Labs
Di Che: Nokia Bell Labs
Ellsworth Burrows: Nokia Bell Labs
Samuel Olsson: Nokia
Robert Tkach: Nokia Bell Labs

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract In optical communications, sphere shaping is used to limit the energy of lightwaves to within a certain value over a period. This minimizes the energy required to contain information, allowing the rate of information transmission to approach the theoretical limit if the transmission medium is linear. However, when shaped lightwaves are transmitted through optical fiber, Kerr nonlinearity manifests itself as nonlinear interference in a peculiar way, potentially lowering communications capacity. In this article, we show that the impact of sphere shaping on Kerr nonlinearity varies with chromatic dispersion, shaping block length and symbol rate, and that this impact can be predicted using a novel statistical measure of light energy. As a practical consequence, by optimally controlling the parameters of sphere-shaped lightwaves, it is experimentally demonstrated that the information rate can be increased by up to 25% in low-dispersion channels on a 2824 km dispersion-managed wavelength-division multiplexed optical fiber link.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28349-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28349-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28349-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28349-x