Boron isotopes in boninites document rapid changes in slab inputs during subduction initiation
Hong-Yan Li (),
Xiang Li (),
Jeffrey G. Ryan (),
Chao Zhang and
Yi-Gang Xu
Additional contact information
Hong-Yan Li: Chinese Academy of Sciences
Xiang Li: Chinese Academy of Sciences
Jeffrey G. Ryan: University of South Florida
Chao Zhang: Northwest University
Yi-Gang Xu: Chinese Academy of Sciences
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract How subduction-related magmatism starts at convergent plate margins is still poorly understood. Here we show that boron isotope variations in early-formed boninites from the Izu-Bonin arc, combined with radiogenic isotopes and elemental ratios document rapid (~0.5 to 1 Myr) changes in the sources and makeup of slab inputs as subduction begins. Heterogeneous hornblende-granulite facies melts from ocean crust gabbros ± basalts fluxed early melting to generate low silica boninites. Hydrous fluids from slab sediments and basalts later fluxed the low silica boninites mantle source to produce high silica boninites. Our results suggest that initially the uppermost parts of the slab were accreted near the nascent trench, perhaps related to early low-angle subduction. The rapid changes in slab inputs recorded in the boninites entail a steepening subduction angle and cooling of the plate interface, allowing for subduction of slab sediment and basalt, and generating hydrous fluids at lower slab temperatures.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28637-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28637-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28637-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().