Mutation-specific reporter for optimization and enrichment of prime editing
I. F. Schene,
I. P. Joore,
J. H. L. Baijens,
R. Stevelink,
G. Kok,
S. Shehata,
E. F. Ilcken,
E. C. M. Nieuwenhuis,
D. P. Bolhuis,
R. C. M. Rees,
S. A. Spelier,
H. P. J. Doef,
J. M. Beekman,
R. H. J. Houwen,
E. E. S. Nieuwenhuis and
S. A. Fuchs ()
Additional contact information
I. F. Schene: University Medical Center Utrecht
I. P. Joore: University Medical Center Utrecht
J. H. L. Baijens: Utrecht University Graduate School of Life Sciences
R. Stevelink: Utrecht University
G. Kok: University Medical Center Utrecht
S. Shehata: University Medical Center Utrecht
E. F. Ilcken: University Medical Center Utrecht
E. C. M. Nieuwenhuis: University Medical Center Utrecht
D. P. Bolhuis: University Medical Center Utrecht
R. C. M. Rees: University Medical Center Utrecht
S. A. Spelier: Regenerative Medicine Center Utrecht
H. P. J. Doef: University Medical Center Groningen
J. M. Beekman: Regenerative Medicine Center Utrecht
R. H. J. Houwen: University Medical Center Utrecht
E. E. S. Nieuwenhuis: University Medical Center Utrecht
S. A. Fuchs: University Medical Center Utrecht
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Prime editing is a versatile genome-editing technique that shows great promise for the generation and repair of patient mutations. However, some genomic sites are difficult to edit and optimal design of prime-editing tools remains elusive. Here we present a fluorescent prime editing and enrichment reporter (fluoPEER), which can be tailored to any genomic target site. This system rapidly and faithfully ranks the efficiency of prime edit guide RNAs (pegRNAs) combined with any prime editor variant. We apply fluoPEER to instruct correction of pathogenic variants in patient cells and find that plasmid editing enriches for genomic editing up to 3-fold compared to conventional enrichment strategies. DNA repair and cell cycle-related genes are enriched in the transcriptome of edited cells. Stalling cells in the G1/S boundary increases prime editing efficiency up to 30%. Together, our results show that fluoPEER can be employed for rapid and efficient correction of patient cells, selection of gene-edited cells, and elucidation of cellular mechanisms needed for successful prime editing.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28656-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28656-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28656-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().