EconPapers    
Economics at your fingertips  
 

Massive interstitial solid solution alloys achieve near-theoretical strength

Chang Liu, Wenjun Lu, Wenzhen Xia, Chaowei Du, Ziyuan Rao, James P. Best, Steffen Brinckmann, Jian Lu, Baptiste Gault, Gerhard Dehm, Ge Wu (), Zhiming Li () and Dierk Raabe ()
Additional contact information
Chang Liu: Max-Planck-Institut für Eisenforschung
Wenjun Lu: Southern University of Science and Technology
Wenzhen Xia: Anhui University of Technology
Chaowei Du: Max-Planck-Institut für Eisenforschung
Ziyuan Rao: Max-Planck-Institut für Eisenforschung
James P. Best: Max-Planck-Institut für Eisenforschung
Steffen Brinckmann: Max-Planck-Institut für Eisenforschung
Jian Lu: City University of Hong Kong
Baptiste Gault: Max-Planck-Institut für Eisenforschung
Gerhard Dehm: Max-Planck-Institut für Eisenforschung
Ge Wu: Xi’an Jiaotong University
Zhiming Li: Central South University
Dierk Raabe: Max-Planck-Institut für Eisenforschung

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Interstitials, e.g., C, N, and O, are attractive alloying elements as small atoms on interstitial sites create strong lattice distortions and hence substantially strengthen metals. However, brittle ceramics such as oxides and carbides usually form, instead of solid solutions, when the interstitial content exceeds a critical yet low value (e.g., 2 at.%). Here we introduce a class of massive interstitial solid solution (MISS) alloys by using a highly distorted substitutional host lattice, which enables solution of massive amounts of interstitials as an additional principal element class, without forming ceramic phases. For a TiNbZr-O-C-N MISS model system, the content of interstitial O reaches 12 at.%, with no oxides formed. The alloy reveals an ultrahigh compressive yield strength of 4.2 GPa, approaching the theoretical limit, and large deformability (65% strain) at ambient temperature, without localized shear deformation. The MISS concept thus offers a new avenue in the development of metallic materials with excellent mechanical properties.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28706-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28706-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28706-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28706-w