Amontons-Coulomb-like slip dynamics in acousto-microfluidics
Aurore Quelennec,
Jason J. Gorman and
Darwin R. Reyes ()
Additional contact information
Aurore Quelennec: National Institute of Standards and Technology
Jason J. Gorman: National Institute of Standards and Technology
Darwin R. Reyes: National Institute of Standards and Technology
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Acousto-microfluidics uses acoustic waves to manipulate and sense particles and fluids, and its integration into biomedical technologies has grown substantially in recent years. Fluid manipulation and measurement with surface acoustic waves rely on the efficient transmission of acoustic energy from the device to the fluid. Acoustic transmission into the fluid can be reduced significantly by slip at the fluid-solid interface, but, up until now, this phenomenon has been widely neglected during the design of acousto-microfluidic devices. Here our interpretation supports that the slip dynamics at the liquid-solid interface in acousto-microfluidics are highly analogous to the Amontons-Coulomb laws for dry friction between solids. In particular, there is a relationship between the local fluid pressure and shear stress, where we show that pressure-shear stress conditions can be divided into slip and no-slip regions, similar to the cone of friction found in dry friction. This improved understanding of slip will enable more reliable and predictable acousto-microfluidic technologies, thus expanding their use in new applications in biology and medicine.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28823-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28823-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28823-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().