EconPapers    
Economics at your fingertips  
 

Generation of a μ-1,2-hydroperoxo FeIIIFeIII and a μ-1,2-peroxo FeIVFeIII Complex

Stephan Walleck, Thomas Philipp Zimmermann, Henning Hachmeister, Christian Pilger, Thomas Huser, Sagie Katz, Peter Hildebrandt, Anja Stammler, Hartmut Bögge, Eckhard Bill and Thorsten Glaser ()
Additional contact information
Stephan Walleck: Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25
Thomas Philipp Zimmermann: Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25
Henning Hachmeister: Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25
Christian Pilger: Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25
Thomas Huser: Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25
Sagie Katz: Institut für Chemie, Technische Universität Berlin
Peter Hildebrandt: Institut für Chemie, Technische Universität Berlin
Anja Stammler: Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25
Hartmut Bögge: Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25
Eckhard Bill: Max-Planck-Institut für Chemische Energiekonversion
Thorsten Glaser: Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract μ-1,2-Peroxo-diferric intermediates (P) of non-heme diiron enzymes are proposed to convert upon protonation either to high-valent active species or to activated P′ intermediates via hydroperoxo-diferric intermediates. Protonation of synthetic μ-1,2-peroxo model complexes occurred at the μ-oxo and not at the μ-1,2-peroxo bridge. Here we report a stable μ-1,2-peroxo complex {FeIII(μ-O)(μ-1,2-O2)FeIII} using a dinucleating ligand and study its reactivity. The reversible oxidation and protonation of the μ-1,2-peroxo-diferric complex provide μ-1,2-peroxo FeIVFeIII and μ-1,2-hydroperoxo-diferric species, respectively. Neither the oxidation nor the protonation induces a strong electrophilic reactivity. Hence, the observed intramolecular C-H hydroxylation of preorganized methyl groups of the parent μ-1,2-peroxo-diferric complex should occur via conversion to a more electrophilic high-valent species. The thorough characterization of these species provides structure-spectroscopy correlations allowing insights into the formation and reactivities of hydroperoxo intermediates in diiron enzymes and their conversion to activated P′ or high-valent intermediates.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-28894-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28894-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-28894-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28894-5