Rapid age-grading and species identification of natural mosquitoes for malaria surveillance
Doreen J. Siria,
Roger Sanou,
Joshua Mitton,
Emmanuel P. Mwanga,
Abdoulaye Niang,
Issiaka Sare,
Paul C. D. Johnson,
Geraldine M. Foster,
Adrien M. G. Belem,
Klaas Wynne,
Roderick Murray-Smith,
Heather M. Ferguson,
Mario González-Jiménez (),
Simon A. Babayan (),
Abdoulaye Diabaté,
Fredros O. Okumu and
Francesco Baldini ()
Additional contact information
Doreen J. Siria: Ifakara Health Institute
Roger Sanou: Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz
Joshua Mitton: University of Glasgow
Emmanuel P. Mwanga: Ifakara Health Institute
Abdoulaye Niang: Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz
Issiaka Sare: Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz
Paul C. D. Johnson: University of Glasgow
Geraldine M. Foster: Liverpool School of Tropical Medicine
Adrien M. G. Belem: Université Nazi Boni de Bobo-Dioulasso
Klaas Wynne: University of Glasgow
Roderick Murray-Smith: University of Glasgow
Heather M. Ferguson: Ifakara Health Institute
Mario González-Jiménez: University of Glasgow
Simon A. Babayan: University of Glasgow
Abdoulaye Diabaté: Institut de Recherche en Sciences de la Santé (IRSS)/Centre Muraz
Fredros O. Okumu: Ifakara Health Institute
Francesco Baldini: University of Glasgow
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract The malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of mosquito vectors. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We present a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquito cuticle that simultaneously identifies the species and age class of three main malaria vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer learning model that learns and predicts the age of new wild populations in Tanzania and Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the impact of simulated control interventions on mosquito populations, measured as a shift in their age structures. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-28980-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28980-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-28980-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().