EconPapers    
Economics at your fingertips  
 

Al13− and B@Al12− superatoms on a molecularly decorated substrate

Masahiro Shibuta, Tomoya Inoue, Toshiaki Kamoshida, Toyoaki Eguchi and Atsushi Nakajima ()
Additional contact information
Masahiro Shibuta: Keio University
Tomoya Inoue: Keio University
Toshiaki Kamoshida: Keio University
Toyoaki Eguchi: Tohoku University
Atsushi Nakajima: Keio University

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Aluminum nanoclusters (Aln NCs), particularly Al13− (n = 13), exhibit superatomic behavior with interplay between electron shell closure and geometrical packing in an anionic state. To fabricate superatom (SA) assemblies, substrates decorated with organic molecules can facilitate the optimization of cluster–surface interactions, because the molecularly local interactions for SAs govern the electronic properties via molecular complexation. In this study, Aln NCs are soft-landed on organic substrates pre-deposited with n-type fullerene (C60) and p-type hexa-tert-butyl-hexa-peri-hexabenzocoronene (HB-HBC, C66H66), and the electronic states of Aln are characterized by X-ray photoelectron spectroscopy and chemical oxidative measurements. On the C60 substrate, Aln is fixed to be cationic but highly oxidative; however, on the HB-HBC substrate, they are stably fixed as anionic Aln− without any oxidations. The results reveal that the careful selection of organic molecules controls the design of assembled materials containing both Al13− and boron-doped B@Al12− SAs through optimizing the cluster–surface interactions.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-29034-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29034-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-29034-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29034-9