In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface
Xin He,
Jonathan M. Larson (),
Hans A. Bechtel () and
Robert Kostecki ()
Additional contact information
Xin He: Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory
Jonathan M. Larson: Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory
Hans A. Bechtel: Advanced Light Source, Lawrence Berkeley National Laboratory
Robert Kostecki: Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Solid-state batteries possess the potential to significantly impact energy storage industries by enabling diverse benefits, such as increased safety and energy density. However, challenges persist with physicochemical properties and processes at electrode/electrolyte interfaces. Thus, there is great need to characterize such interfaces in situ, and unveil scientific understanding that catalyzes engineering solutions. To address this, we conduct multiscale in situ microscopies (optical, atomic force, and infrared near-field) and Fourier transform infrared spectroscopies (near-field nanospectroscopy and attenuated total reflection) of intact and electrochemically operational graphene/solid polymer electrolyte interfaces. We find nanoscale structural and chemical heterogeneities intrinsic to the solid polymer electrolyte initiate a cascade of additional interfacial nanoscale heterogeneities during Li plating and stripping; including Li-ion conductivity, electrolyte decomposition, and interphase formation. Moreover, our methodology to nondestructively characterize buried interfaces and interphases in their native environment with nanoscale resolution is readily adaptable to a number of other electrochemical systems and battery chemistries.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29103-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29103-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29103-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().