EconPapers    
Economics at your fingertips  
 

The speed limit of optoelectronics

M. Ossiander (), K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D. Zimin, J. A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F. Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz () and M. Schultze
Additional contact information
M. Ossiander: Max-Planck-Institut für Quantenoptik
K. Golyari: Max-Planck-Institut für Quantenoptik
K. Scharl: Max-Planck-Institut für Quantenoptik
L. Lehnert: Max-Planck-Institut für Quantenoptik
F. Siegrist: Max-Planck-Institut für Quantenoptik
J. P. Bürger: Max-Planck-Institut für Quantenoptik
D. Zimin: Max-Planck-Institut für Quantenoptik
J. A. Gessner: Max-Planck-Institut für Quantenoptik
M. Weidman: Max-Planck-Institut für Quantenoptik
I. Floss: Vienna University of Technology
V. Smejkal: Vienna University of Technology
S. Donsa: Vienna University of Technology
C. Lemell: Vienna University of Technology
F. Libisch: Vienna University of Technology
N. Karpowicz: CNR NANOTEC Institute of Nanotechnology, via Monteroni
J. Burgdörfer: Vienna University of Technology
F. Krausz: Max-Planck-Institut für Quantenoptik
M. Schultze: Ludwig-Maximilians-Universität München

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-29252-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29252-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-29252-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29252-1