Donut-like organization of inhibition underlies categorical neural responses in the midbrain
Nagaraj R. Mahajan and
Shreesh P. Mysore ()
Additional contact information
Nagaraj R. Mahajan: Johns Hopkins University
Shreesh P. Mysore: Johns Hopkins University
Nature Communications, 2022, vol. 13, issue 1, 1-17
Abstract:
Abstract Categorical neural responses underlie various forms of selection and decision-making. Such binary-like responses promote robust signaling of the winner in the presence of input ambiguity and neural noise. Here, we show that a ‘donut-like’ inhibitory mechanism in which each competing option suppresses all options except itself, is highly effective at generating categorical neural responses. It surpasses motifs of feedback inhibition, recurrent excitation, and divisive normalization invoked frequently in decision-making models. We demonstrate experimentally not only that this mechanism operates in the midbrain spatial selection network in barn owls, but also that it is necessary for categorical signaling by it. The functional pattern of neural inhibition in the midbrain forms an exquisitely structured ‘multi-holed’ donut consistent with this network’s combinatorial inhibitory function for stimulus selection. Additionally, modeling reveals a generalizable neural implementation of the donut-like motif for categorical selection. Self-sparing inhibition may, therefore, be a powerful circuit module central to categorization.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29318-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29318-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29318-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().