EconPapers    
Economics at your fingertips  
 

Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite

Sonja Aulbach () and Thomas Stachel
Additional contact information
Sonja Aulbach: Goethe-Universität
Thomas Stachel: University of Alberta

Nature Communications, 2022, vol. 13, issue 1, 1-13

Abstract: Abstract Cratonic eclogite is the product of oceanic crust subduction into the subcontinental lithospheric mantle, and it also is a fertile diamond source rock. In contrast to matrix minerals in magma-borne xenoliths, inclusions in diamond are shielded from external fluids, retaining more pristine information on the state of the eclogite source at the time of encapsulation. Vanadium is a multi-valent element and a widely used elemental redox proxy. Here, we show that that xenolithic garnet has lower average V abundances than garnet inclusions. This partly reflects crystal-chemical controls, whereby higher average temperatures recorded by inclusions, accompanied by enhanced Na2O and TiO2 partitioning into garnet, facilitate V incorporation at the expense of clinopyroxene. Unexpectedly, although diamond formation is strongly linked to metasomatism and xenoliths remained open systems, V concentrations are similar for bulk eclogites reconstructed from inclusions and from xenoliths. This suggests an oxygen-conserving mechanism for eclogitic diamond formation, and implies that eclogite is an efficient system to buffer fO2 over aeons of lithospheric mantle modification by subduction-derived and other fluids.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-29567-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29567-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-29567-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29567-z