Seismic precursors to the Whakaari 2019 phreatic eruption are transferable to other eruptions and volcanoes
Alberto Ardid (),
David Dempsey,
Corentin Caudron and
Shane Cronin
Additional contact information
Alberto Ardid: University of Canterbury
David Dempsey: University of Canterbury
Corentin Caudron: Université Libre de Bruxelles
Shane Cronin: University of Auckland
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract Volcanic eruptions that occur without warning can be deadly in touristic and populated areas. Even with real-time geophysical monitoring, forecasting sudden eruptions is difficult, because their precursors are hard to recognize and can vary between volcanoes. Here, we describe a general seismic precursor signal for gas-driven eruptions, identified through correlation analysis of 18 well-recorded eruptions in New Zealand, Alaska, and Kamchatka. The precursor manifests in the displacement seismic amplitude ratio between medium (4.5–8 Hz) and high (8–16 Hz) frequency tremor bands, exhibiting a characteristic rise in the days prior to eruptions. We interpret this as formation of a hydrothermal seal that enables rapid pressurization of shallow groundwater. Applying this model to the 2019 eruption at Whakaari (New Zealand), we describe pressurization of the system in the week before the eruption, and cascading seal failure in the 16 h prior to the explosion. Real-time monitoring for this precursor may improve short-term eruption warning systems at certain volcanoes.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29681-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29681-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29681-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().