EconPapers    
Economics at your fingertips  
 

Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass

Wenlong Xu, Yuwei Zhang, Junjun Wang, Yixiu Xu, Li Bian, Qiang Ju, Yuemin Wang () and Zhenlan Fang ()
Additional contact information
Wenlong Xu: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
Yuwei Zhang: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
Junjun Wang: Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT)
Yixiu Xu: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
Li Bian: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
Qiang Ju: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
Yuemin Wang: Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT)
Zhenlan Fang: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract The development of synthetic methodologies towards enhanced performance in biomass conversion is desirable due to the growing energy demand. Here we design two types of Ru impregnated MIL-100-Cr defect engineered metal-organic frameworks (Ru@DEMOFs) by incorporating defective ligands (DLs), aiming at highly efficient catalysts for biomass hydrogenation. Our results show that Ru@DEMOFs simultaneously exhibit boosted recyclability, selectivity and activity with the turnover frequency being about 10 times higher than the reported values of polymer supported Ru towards D-glucose hydrogenation. This work provides in-depth insights into (i) the evolution of various defects in the cationic framework upon DLs incorporation and Ru impregnation, (ii) the special effect of each type of defects on the electron density of Ru nanoparticles and activation of reactants, and (iii) the respective role of defects, confined Ru particles and metal single active sites in the catalytic performance of Ru@DEMOFs for D-glucose selective hydrogenation as well as their synergistic catalytic mechanism.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-29736-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29736-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-29736-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29736-0