Curving the space by non-Hermiticity
Chenwei Lv,
Ren Zhang,
Zhengzheng Zhai and
Qi Zhou ()
Additional contact information
Chenwei Lv: Purdue University
Ren Zhang: Purdue University
Zhengzheng Zhai: Purdue University
Qi Zhou: Purdue University
Nature Communications, 2022, vol. 13, issue 1, 1-6
Abstract:
Abstract Quantum systems are often classified into Hermitian and non-Hermitian ones. Extraordinary non-Hermitian phenomena, ranging from the non-Hermitian skin effect to the supersensitivity to boundary conditions, have been widely explored. Whereas these intriguing phenomena have been considered peculiar to non-Hermitian systems, we show that they can be naturally explained by a duality between non-Hermitian models in flat spaces and their counterparts, which could be Hermitian, in curved spaces. For instance, prototypical one-dimensional (1D) chains with uniform chiral tunnelings are equivalent to their duals in two-dimensional (2D) hyperbolic spaces with or without magnetic fields, and non-uniform tunnelings could further tailor local curvatures. Such a duality unfolds deep geometric roots of non-Hermitian phenomena, delivers an unprecedented routine connecting Hermitian and non-Hermitian physics, and gives rise to a theoretical perspective reformulating our understandings of curvatures and distance. In practice, it provides experimentalists with a powerful two-fold application, using non-Hermiticity to engineer curvatures or implementing synthetic curved spaces to explore non-Hermitian quantum physics.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29774-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29774-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29774-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().