Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
Kang Liu,
Junwei Fu,
Yiyang Lin,
Tao Luo,
Ganghai Ni,
Hongmei Li,
Zhang Lin and
Min Liu ()
Additional contact information
Kang Liu: Central South University
Junwei Fu: Central South University
Yiyang Lin: Central South University
Tao Luo: Central South University
Ganghai Ni: Central South University
Hongmei Li: Central South University
Zhang Lin: Central South University
Min Liu: Central South University
Nature Communications, 2022, vol. 13, issue 1, 1-8
Abstract:
Abstract Single-atom Fe-N-C catalysts has attracted widespread attentions in the oxygen reduction reaction (ORR). However, the origin of ORR activity on Fe-N-C catalysts is still unclear, which hinder the further improvement of Fe-N-C catalysts. Herein, we provide a model to understand the ORR activity of Fe-N4 site from the spatial structure and energy level of the frontier orbitals by density functional theory calculations. Taking the regulation of divacancy defects on Fe-N4 site ORR activity as examples, we demonstrate that the hybridization between Fe 3dz2, 3dyz (3dxz) and O2 π* orbitals is the origin of Fe-N4 ORR activity. We found that the Fe–O bond length, the d-band center gap of spin states, the magnetic moment of Fe site and *O2 as descriptors can accurately predict the ORR activity of Fe-N4 site. Furthermore, these descriptors and ORR activity of Fe-N4 site are mainly distributed in two regions with obvious difference, which greatly relate to the height of Fe 3d projected orbital in the Z direction. This work provides a new insight into the ORR activity of single-atom M-N-C catalysts.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29797-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29797-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29797-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().