Superconducting spintronic tunnel diode
E. Strambini (),
M. Spies (),
N. Ligato,
S. Ilić,
M. Rouco,
Carmen González-Orellana,
Maxim Ilyn,
Celia Rogero,
F. S. Bergeret,
J. S. Moodera,
P. Virtanen,
T. T. Heikkilä and
F. Giazotto ()
Additional contact information
E. Strambini: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore
M. Spies: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore
N. Ligato: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore
S. Ilić: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
M. Rouco: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
Carmen González-Orellana: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
Maxim Ilyn: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
Celia Rogero: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
F. S. Bergeret: Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU
J. S. Moodera: Physics Department and Plasma Science and Fusion Center, Massachusetts Institute of Technology
P. Virtanen: University of Jyväskylä
T. T. Heikkilä: University of Jyväskylä
F. Giazotto: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore
Nature Communications, 2022, vol. 13, issue 1, 1-7
Abstract:
Abstract Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 μV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29990-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29990-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29990-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().