Type II porous ionic liquid based on metal-organic cages that enables l-tryptophan identification
Zhuxiu Zhang,
Baolin Yang,
Bingjie Zhang,
Mifen Cui,
Jihai Tang () and
Xu Qiao ()
Additional contact information
Zhuxiu Zhang: Nanjing Tech University
Baolin Yang: Nanjing Tech University
Bingjie Zhang: Nanjing Tech University
Mifen Cui: Nanjing Tech University
Jihai Tang: Nanjing Tech University
Xu Qiao: Nanjing Tech University
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards l-tryptophan (l-Trp) over other aromatic amino acids. A previously known class of anionic organic–inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards l-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and l-Trp. Specifically, each HD unit is filled with nearly 5 l-Trp molecules, which is higher than the l-Trp occupation in the structure unit of other benchmark metal-organic frameworks.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-30092-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30092-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-30092-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().