EconPapers    
Economics at your fingertips  
 

A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex

Giuseppe Chindemi (), Marwan Abdellah, Oren Amsalem, Ruth Benavides-Piccione, Vincent Delattre, Michael Doron, András Ecker, Aurélien T. Jaquier, James King, Pramod Kumbhar, Caitlin Monney, Rodrigo Perin, Christian Rössert, Anil M. Tuncel, Werner Geit, Javier DeFelipe, Michael Graupner, Idan Segev, Henry Markram and Eilif B. Muller ()
Additional contact information
Giuseppe Chindemi: École Polytechnique Fédérale de Lausanne
Marwan Abdellah: École Polytechnique Fédérale de Lausanne
Oren Amsalem: the Hebrew University of Jerusalem
Ruth Benavides-Piccione: Consejo Superior de Investigaciones Científicas
Vincent Delattre: École Polytechnique Fédérale de Lausanne
Michael Doron: the Hebrew University of Jerusalem
András Ecker: École Polytechnique Fédérale de Lausanne
Aurélien T. Jaquier: École Polytechnique Fédérale de Lausanne
James King: École Polytechnique Fédérale de Lausanne
Pramod Kumbhar: École Polytechnique Fédérale de Lausanne
Caitlin Monney: École Polytechnique Fédérale de Lausanne
Rodrigo Perin: École Polytechnique Fédérale de Lausanne
Christian Rössert: École Polytechnique Fédérale de Lausanne
Anil M. Tuncel: École Polytechnique Fédérale de Lausanne
Werner Geit: École Polytechnique Fédérale de Lausanne
Javier DeFelipe: Consejo Superior de Investigaciones Científicas
Michael Graupner: SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS
Idan Segev: the Hebrew University of Jerusalem
Henry Markram: École Polytechnique Fédérale de Lausanne
Eilif B. Muller: École Polytechnique Fédérale de Lausanne

Nature Communications, 2022, vol. 13, issue 1, 1-19

Abstract: Abstract Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30214-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30214-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30214-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30214-w