Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction
Xiaoxia Chang,
Sudarshan Vijay,
Yaran Zhao,
Nicholas J. Oliveira,
Karen Chan () and
Bingjun Xu ()
Additional contact information
Xiaoxia Chang: Peking University
Sudarshan Vijay: Technical University of Denmark
Yaran Zhao: University of Delaware
Nicholas J. Oliveira: University of Delaware
Karen Chan: Technical University of Denmark
Bingjun Xu: Peking University
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract In situ/operando surface enhanced infrared and Raman spectroscopies are widely employed in electrocatalysis research to extract mechanistic information and establish structure-activity relations. However, these two spectroscopic techniques are more frequently employed in isolation than in combination, owing to the assumption that they provide largely overlapping information regarding reaction intermediates. Here we show that surface enhanced infrared and Raman spectroscopies tend to probe different subpopulations of adsorbates on weakly adsorbing surfaces while providing similar information on strongly binding surfaces by conducting both techniques on the same electrode surfaces, i.e., platinum, palladium, gold and oxide-derived copper, in tandem. Complementary density functional theory computations confirm that the infrared and Raman intensities do not necessarily track each other when carbon monoxide is adsorbed on different sites, given the lack of scaling between the derivatives of the dipole moment and the polarizability. Through a comparison of adsorbed carbon monoxide and water adsorption energies, we suggest that differences in the infrared vs. Raman responses amongst metal surfaces could stem from the competitive adsorption of water on weak binding metals. We further determined that only copper sites capable of adsorbing carbon monoxide in an atop configuration visible to the surface enhanced infrared spectroscopy are active in the electrochemical carbon monoxide reduction reaction.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-30262-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30262-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-30262-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().