Translaminar recurrence from layer 5 suppresses superficial cortical layers
Koun Onodera and
Hiroyuki K. Kato ()
Additional contact information
Koun Onodera: University of North Carolina at Chapel Hill
Hiroyuki K. Kato: University of North Carolina at Chapel Hill
Nature Communications, 2022, vol. 13, issue 1, 1-16
Abstract:
Abstract Information flow in the sensory cortex has been described as a predominantly feedforward sequence with deep layers as the output structure. Although recurrent excitatory projections from layer 5 (L5) to superficial L2/3 have been identified by anatomical and physiological studies, their functional impact on sensory processing remains unclear. Here, we use layer-selective optogenetic manipulations in the primary auditory cortex to demonstrate that feedback inputs from L5 suppress the activity of superficial layers regardless of the arousal level, contrary to the prediction from their excitatory connectivity. This suppressive effect is predominantly mediated by translaminar circuitry through intratelencephalic neurons, with an additional contribution of subcortical projections by pyramidal tract neurons. Furthermore, L5 activation sharpened tone-evoked responses of superficial layers in both frequency and time domains, indicating its impact on cortical spectro-temporal integration. Together, our findings establish a translaminar inhibitory recurrence from deep layers that sharpens feature selectivity in superficial cortical layers.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-30349-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30349-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-30349-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().